Skip to content

The Data Scientist

the data scientist logo

Creating a data-driven culture

Wanna become a data scientist within 3 months, and get a job? Then you need to check this out !

The importance of a data-driven culture

With the world around us being more and more data-driven, organizations are trying to catch-up. One of the most interesting challenges for organizations which have been running long before the data revolution is how to create a data-driven culture.

I have lots of experience in this field, starting from my PhD work with football teams in the United Kingdom, and moving on to The Tesseract Academy. UK football teams are an interesting case. Even though they spend millions of pounds on players, their decision making is driven by strong traditions and intuition rather than hard science. However, in the last few years things have taken a turn.

Moneyball is an excellent film for anyone interested in sports analytics and the culture of sports clubs. If you have the time it is also worth to read the book. Even though in this post I am talking about UK football teams, the culture depicted in the film is pretty similar to the one I encountered.

data-driven culture in moneyball

One such rule is that the coach is more or less has his own philosophy and has lots of control over what happens. It is valid for a coach to have an opinion against data or science, even regarding proven facts. This is not too dissimilar to the situation that many companies face with old CEOs having a very specific picture of how things should be run.

Another interesting point is the fact that football teams are under lots of pressure. Every week is a new challenge, and the fact that there is a hierarchy in place, means that everyone is pointing the figure to someone else. If someone introduces a new way of doing things, they take the risk that in case something goes wrong, they might be blamed, solely because they tried to do something different to the tradition.

This kind of structure can be found in some companies as well, and can create an attitude of just trying to survive the week, instead of breaking boundaries. This problem is further aggravated by the fact that because the discipline of sports analytics is still new in the UK and Europe, it is difficult to see impressive results fast. Rather, a longer term investment is required, which needs faith from the team in order to work out.

stress in premier league
In professional football, sometimes the stress can be great.

Becoming data-driven

Another interesting point, which is something rare in most companies, is that making the company data-driven requires changes across all divisions of a team. In a team you have medical and training staff of different types: physiotherapists, football coaches, weightlifting coaches, etc. Successfully making the transition to a data-driven team requires a data-driven culture across all segments of the team. The reason is that every single person that works with the athletes needs to keep detail records of what took place in training.

Furthermore, if the team is looking to optimize its performance, the staff should not just record data, but also believe in what it’s doing, take active interest and inquire on the best way to record data. This is far from trivial, given the number of errors and mistakes I’ve seen happening because the people responsible for data entry might simply not care too much.

This probably contrasts with most companies, where there are fewer people responsible for inputting data, but it poses an interesting challenge in making an organization more data driven.

data entry mistakes
Data entry can be ridden with mistakes

The future is data-driven

The good thing is that the situation is changing in the UK with more and more teams trying to become data-centric. My opinion is that sports analytics will play a large role in the medical and training divisions in football clubs in the next decade, but will play a smaller role in coaching. Medicine and training are more data-driven, while coaching is strongly affected by a coach’s personal style and opinion. We will probably not see many coaches deferring a large part of their decision making to algorithms.

I’ve found two elements to be most important in changing the culture of a team, and these lessons also apply to companies. The first one, is the existence of a champion, someone in an influential position who really believes in the project and can push it forward. The second one, is to quickly get results which can feed back both to the staff and the the people up on the hierarchy. Feeding results back to the staff helps motivation and shows how data translates in results. Feeding results up to the hierarchy will make any doubts disappear over time, eventually turning the heads of the organization into champions.

Coming back to moneyball, everyone in baseball eventually understood that the best way to play the game is through data, simply because data brings results. That’s probably the most important step towards transitioning to a data-driven culture in a company. And that’s why we will see more and more companies, organizations and sports clubs make that step in the next years.

If you are interested to learn more about digital transformation and creating a data-driven culture feel free to check The Tesseract Academy, or some of my courses.

Wanna become a data scientist within 3 months, and get a job? Then you need to check this out !